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A qualitative investigation of the system of differential equations de-
scribing the quasi-one-dimensional flow of an electrically conducting
medium at small magnetic Reynolds numbers gives an idea of the
different possible flow patterns occuring when the electromagnetic
field and channel shape are given in different ways. Such a treatment
is essential for the calculation of one-dimensional flows, and also

for the solution of variational problems [1].

In the literature devoted to this question studies have been made of
flow in a one-dimensional electromagnetic field and a channel of
constant cross section [2], as well as of the flow when the magnetic
field is described by specially given functions of the flow velocity
[3]. These cases reduce to the analysis of integral curves in a plane.

In the present paper the investigation is carried out for an arbitrary
distribution of the electric and magnetic fields and channel shape,
which leads to a consideration of the behavior of integral curves in
three-dimensional space. The qualitative results are illustrated by
examples.

1. We consider the steady~state flow of an ideal,
compressible, electrically conducting medium in a
flat channel (Fig. 1) with an external magnetic field

B° = (0,0, ~B°). The upper and lower walls of the chan-

nels are conductors with potentials ¢° and —¢°, re-

spectively. For x° < 0 the channel walls are insulators

and B° = 0. The gas flows in the positive direction of
the x axis from a reservoir, where it has a density
pg°, enthalpy hg® and electrical conductivity og°.

Fig. 1

Assuming that the flow is one-dimensional, that the

magnetic Reynolds number is small, that the usual
form of Ohm's law is valid, and supposing that the
medium is a perfect gas, we write down the equations
of motion, energy and continuity [1],
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Here 2y is the height of the channel, u is the ve-
locity, p is the pressure, m the flowrate, A is a di-
mensionless parameter, v is the ratio of specific
heats, a prime indicates derivatives with respect to
X, the quantities with the index ° have dimensions,
those without it are dimensionless. The relation be-
tween dimensional and dimensionless variables is

given by the relations
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where [° is the length of the channel, B is the maxi-
mum magnetic field strength for 0 = x = 1, the sub~
scripts @, b are assigned to parameters in the initial
and final cross sections of the channel, the subscript
s refers to parameters in the reservoir.

Fig. 2

It follows from (1.1) that flow in the channel is de~
termined by its shape y(x), the magnetic field strength
B(x), the electric potential ¢(x), and the boundary con-
ditions in the initial and final cross sections of the
channel. We shall assume that the functions B(x) and
@ (x) are continuous everywhere with the exception of
isolated points where they may have a discontinuity
of the first kind, and y(x) is continuous and positive.

We shall further assume that for x = 0 the param-
eters u,, P, Pg are known, and for x = 1 they fulfill

one of the conditions

My<A, pp= P,

Mb > 17 Dy > B 5
depending on the flow configuration, where My, is the
Mach number at the exit cross section of the channel,
and p., is the pressure of the medium which the flow
enters. '

Introducing the Mach number M in place of the pres-
sure p, and eliminating p with the help of the continuity
equation, we obtain, instead of (1.1), the equivalent
system
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The second equation of (1.4) may be transformed to
the form
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For « >0 we have a generator configuration, for

o < 0 an accelerator configuration{2, 3]. Inwhatfollows
we shall set o = 1 for simplicity in the calculations.

M 4.

4

Fig. 3

2. For constant B, ¢, y the system (1.4) is auton-
omous and may be investigated in the uM plane, as
was done in [2]. For arbitrary B(x) and y(x), but ¢ =
= 0 the second equation of (1.1) is integrated by quad-
ratures and the system (1.4) reduces to the equation

M1+ (x—1) M?]

M = T1— M

B2 Yy
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an analysis of which is carried out in the XM plane.

In the general case, when B, ¢, y are arbitrary
functions of x it is necessary to consider the space
xuM, while only those integral curves belonging to the
region

0<e<<t, u>0, (2.1)

are of interest for the present investigation.

One of the boundaries of this region (the plane x = 0)
is the plane in which the initial conditions are given,
and two others, theplanesu = 0 and M = 0 are composed
of integral curves of system (1.4} of the form

M>0

M=0, wu=consty(z), u=0, z= const.
To find the singular points, we set the numerator
and denominator of the right side of Egs. (1.4) equal

to zero:

M(ur““z1 M) (uszAaBI—muz—%'—> -0,

u (1cM21/A<:cl32-——mz/z2 3;/—) =0, mu(1—M?=0.

It follows from the form of these equations that
their solutions are not individual isolated points, but
certain lines. These lines, which we shall call sin-
gular, are as follows:

M =0,
M = 1’ u =

=[er—tyy = + 2D ( 2R 0T @2.3)

u=0, (2.2)

We shall investigate the nature of the singularities on line (2.2),
i.e., the x axis. For small u and M system (1 .4) reduces to the form
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We shall consider the behavior of the integral curves in the neigh-
borhood of the plane u = 0, i.e., in the small region Q determined
by the inequalities M < € and u « M. Then, neglecting the second
terms in the numerators of the right sides of equations (2.4), we
have that M' > 0, u' > 0, since yy/m > 0.

This means that the integral curves for u «< M emerge from the
singular points of the x axis and as x increases leave the region Q.

No integral curve may enter the region € as x increases, and so in

the neighborhood of a singular point it fulfills the relation M/u < const,
which, when set in (2.4), gives x—> « if M—> 0, and u~> 0. Thus,

over a finite segment of the x axis no integral curve enters singular
points on the X axis as x increases.

We shall now investigate the nature of the sin-
gular points on the line (2.3), situated in the plane
M=1.

In view of the fact that in the neighborhood of a
singular point belonging to the line (2.3), an increase
in u is expressed by an increase in M and x in ac-
cordance with (1.5), the integral curves in the neigh-
borhood of this point lie in some plane, and the char-
acter of the singularity may be analyzed by the
method applicable to curves in planes. The following
equation is obtained for the derivatives M' calculated
along the direction of curve itself:

M'® 4y, M’ + vy, = 0. (2.5)

Here
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The singularities may have different characters
[4], depending on the value of the roots of equation

(2.5).

(2.6)

Fig. 4

First case. The roots of (2.5) are real, different
in magnitude, and are both negative. In this case the
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singular point is a node, and in its neighborhood the
coefficients in (2.6) satisfy the conditions

Y. >0, ve = 0, Yy =y, >0 (2.7

At such a singular point a continuous transition
through the speed of sound is possible only in passing
from supersonic to subsonic flow. That part of the in-
tegral curve which corresponds to supersonic flow is
determined by specifying the initial conditions at x =
=0, M= Mg, u=u,, and the integral curve corre-
sponding to subsonic flow from the singular point to
x =1 is determined by one of the conditions (1.2) or
(1.3).

Second case. The roots of (2.5) are real, of dif-
ferent magnitude, and of opposite sign. In this case
the singular point is a saddle point, and the condition

Y2 <O (2.8)

is fulfilled in its neighborhood.

At a singularity of this type a continuous transition
is possible from subsonic to supersonic flow along one
of the integral curves entering the saddle point from
M' >0, and a continuous transition from supersonic
to subsonic flow is possible along another integral
curve entering the saddle point from M' < 0.

Fig. 5

An exampie of flow correspondinig to a passage through the speed
of sound ar a singularity of this type is well known in gasdynamics
(Laval nozzle), where the condition y' = 0 should be fulfilled at the
transition point.

Third case. The roots of (2.5) are complex. In this
case the singular point is a focus, and the condition

Yoyt — v <0 (2.9)

is fulfilled in its neighborhood.

At a singularity of this type a continuous transi-
tion through the speed of sound is impossible. The
flows which are possible in this case may be either
totally supersonic, or totally subsonic, or with a
transition from supersonic to subsonic configurations
in a shock wave.

Fourth case. The roots of (2.5) are real, of dif-
ferent magnitude, and are both positive,

In this case the singular point is also a saddle
point, and the condition

Y1<01 Y2>07

Yo —v. >0 (2.10)

is fulfilled in its neighborhood.

Close to such a singularity a continuous transition
is possible from subsonic to supersonic flow. It fol-
lows from relations (2.10), (2.3), and (2.6) that a
singularity of this type may exist in a narrowing chan-
nel y' < 0, operating as an accelerator. Obviously a
single-valued solution cannot be constructedinthis case
since a family of curves depending on one parameter
emerges from the singular point, each of which sat-
isfies the condition My > 1, py, > p_-

Fig. 6

We note that these configurations may be obtained only by a non-
stationary path, since the curves from the region Q, and its bounding
curve 1, represented schematically in the plane xM in Fig. 2, cor-
respond to a quasi-stationary increase of the pressure differential p; —
— Pw- In what follows we shall not consider this type of singularity.

Different flow configurations correspond to differ-
ent types of singularity. The part of the three-dimen-
sional space under consideration (2.1) may be divided
into a series of regions depending on the nature of the
flow.

For the sake of clarity, we shall begin with an
analysis of these regions for the simpler case when
¢ = 0, which reduces to an investigation of the inte~
gral curves in a plane, and we shall subsequently ex-
tend the results to the case of three-dimensional space.

1=

..w— s

Fig. 7

For ¢ = 0, B = B{x), v = y(x) the coefficients (2.6)
have the form
) wyAB .
N=——5—" Te™ == el
. B "
Yoi* =m ("B“ — 7yy“> .
We shall consider the first case. * The conditions
(2.7) impose the restrictions

2n By w7
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*In the present paper the node type singularity is
described in more detail than the others, since it cor-
responds to the most varied set of flow regions.
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on B' and y", which when fulfilled result in a singular
point which is a node (Fig. 3). The separatrix of the
node 1 (it is given by a line of dots and dashes in Fig.
3) divides the integral curves entering the node for

M > 1 from the curves entering the node for M < 1.
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Fig. 8

Solutions with a continuous transition through the speed
of sound are situated in the region Q; whichliesbetween
the separatrix 1 and the integral curve 2. The initial
data from the segment q; correspond to the region Q;
on the straight line x = 0.

The region Q, is situated below the integral curve
3, and its integral curves correspond to totally sub-
sonic flow with initial conditions given on segment 5.

Flow configurations which are totally supersonic
occur in region Q3, which is situated above integral
curve 4, entering the point M =1, x = 1. The initial
data for solutions in this region are contained in the
semi-infinite segment qs.

The separatrix 1, the integral curve 4 and the
straight line M = 1 divide the region Q4, and the solu-
tion may be extended continuously along the integral
curves of this region to M =1 for x < 1. The integral
curves from @4 correspond to supersonic flow in front
of the shock wave, and the subsonic part of this solu-
tion belongs either to the region Q,, or to the subsonic
part of region Qy, or to the region Qz enclosed between
the integral curve 3, the straight line M = 1 and the
separatrix 1.

The position of the shock wave in the channel (given
in Fig. 3 by a broken line) is determined by the condi-
tions at x = 1.

Initial data from the interval q, correspond to solu-
tions with a shock wave. Integral curves from the re-
gion Q¢ bounded by the straight line M = 1 and the
curve 2, do not correspond to actual flow patterns.

Certain regions may increase, decrease or vanish
altogether, depending on the position of the singular
point x = x* in the channel. For example, for x* =1
the region Q, is absent.

We now assume that in the three-dimensional case
with ¢(x) # 0 there is one singular line in the plane
M =1 composed entirely of nodes. The separatrices
of the nodes from a surface in the space xuM, sepa-
rating the solutions with a continuous transition through
the velocity of sound from solutions with a shock wave.
The separatrix surface and the plane M = 1 infersecting
the plane x = 0 from a region of initial values of u, M,
from which flow patterns with a continuous transition
through the speed of sound commence.

The integral curves having M = 1 for x = 1 (similar
to curve 4 in Fig. 3), form a surface separating super-
sonic flow in the channel from flow with a shock wave,
and the integral curves having M =1 for x = 0 form a
surface dividing subsonic and supersonic flow from
the integral curves similar to the curves from regions
Q; and Qg in a plane.

On intersecting the plane x = 0 these regions define
corresponding regions of initial values.

In the second case for ¢ = 0 conditions (2.8) give

B ” 2
B g—y’ <= % —1}’-1 1

and the singular point is a saddle point.

The separatrices 1 and 2 of the saddle point (Fig.

4) divide the field of integral curves into the regions:
Q3 below both separatrices where the flow is entirely
subsonic; Q3 above both separatrices where the flow

is entirely supersonic; Qs between the separatrix 1
and the straight line M = 1 to the right of the singular
point. The integral curves belonging to Q; correspond
to the subsonic flow behind a shock wave if the super-
sonic part of the solution lies in the region Q; or on its
border; Qg to the left of the singular point between the
separatrices and to the right between the separatrix

2 and the straight line M = 1. The integral curves of
this region do not correspond to observed flows. A con-
tinuous transition through the velocity of sound is pos-
sible only along the separatrix.

The initial data from q,, g3, 94 correspond to the
regions Qj, Q3, Qg.

In the three-dimensional case for ¢ = @(x), if the
singular line which occurs is composed only of saddle
type singularities, the separatrices of the saddle points
form a surface dividing the portion of the three~dimen-
sional space (2.1) into regions similar to the regions
in the plane, and the flow configurations which occur
are similar to those considered above,.
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Fig. 9

For focus type singularities (Fig. 5) in the case

¢ = 0 the inequalities (2.9) give
B’ y” %— 7
T iEEn"-

Here the flow may be either entirely supersonic—
in the region Q3, or entirely subsonic—in the region
Q,, or may have a transition from supersonic to sub-
sonic flow in a shock wave.
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Integral curves corresponding to the supersonic
part of the solution lie in the region Q4, and the solu-
tions beyond the shock wave are situated in the region
Q, and on its border —the integral curve 1.

The integral curves from the region Q4 do not cor-
respond to actual flow patterns.

Degenerate singularities such as centers (roots of
{2.5) imaginary), nodes with one characteristic di-
rection (roots which coincide) ete., are not analyzed
here since the presence of such singularities does
not lead to new types of flow.

We shall now consider different cases of interac-
tion of the singularities for integral curves in the
plane (¢ = 0). For example, let there be a focus and
a node in the region under consideration (Fig. 6).

Two cases may occur:
Separatrix 1 of the node intersects the straight line
= 0, and solutions are possible with a continuous
transition through the speed of sound (Fig. 6,a).

Separatrix 1 of the node does not intersect the
straight line x = 0, and consequently there are no
solutions with a continuous transition through the
speed of sound (Fig. 6, b).

In the first case there will be regions of initial
values g; on the straight line x = 0, corresponding to
flow patterns in the neighborhood of the node, and in
the second case regions corresponding to flow patterns
in the neighborhood of the focus.

When a focus and a saddle point interact the pos-
sible cases are similar to those considered above. If
there is a saddle point and a node in the region under
consideration (Fig. 7), then there may be a double
transition through the speed of sound—first at the node
from supersonic to subsonic flow, and then at the
saddle point from subsonic to supersonic flow on con-
dition that the separatrix 2 of the saddle point emer-
ges from the node (Fig. 7a). If the separatrix 2 of the
saddle point begins in the region Qg (Fig. 7b), then
a solution with a continuous transition through the
speed of sound is possible only along the separatrix 1
of the saddle. In the first case there will be initial
values on the straight line x = 0 corresponding to flow
patterns in the neighborhood of the node and the sad-
dle point, and in the second case the initial data cor-
responding to solutions with a transition through the
velocity of sound fall into region qgof the saddle point
at the node. Other combinations of singularities may
be analyzed in the same manner.

For ¢ = ¢(x) in the general case there may be any
set of singularities in region (2.1) changing their char-
acter along the line {2.3). The analysis of their in-
teraction is similar to that outlined above.

3. By way of an example, we give an analysis of the possible flow
configurations in a uniform electromagnetic field and a channel which
widens linearly.

In the calculations illustrating this point the values of the constants
were chosen as follows: B= 1, ¢ =1, = 5/3, the angle between the
wall and axis of the channel is 9° = 20° and corresponding to this
y' Z°/ya° = 3.64, the Mach number and the velocity at the channel
exit ate M, = 1, ug= 0.5, while m = 0.32479.

Assuming that the {low into the inlet of the MHD channel occurs
without supplying energy, we find that the velocity u = 1 everywhere
in the flow, and consequently, in the example under consideration,
the region of space (x,u, M) is determined by the inequalities

0z <, 0<u<t, M>0. (3.1

The singular line (2.3) in the plane M = 1, represented in Fig. 8,
is composed of two branches; u = u; and u = up, corresponding to the
plus and minus signs in Eq. (2.3). As the value of the parameter A
increases the lines of one branch draw closer together, tending to a
limiting position for A== e

Investigation has shown that along the line u = u, the singular
points are all saddles for all values of A and all x in the region (3.1).

In the neighborhood of this branch of the singular line o < 0, i.e.,
the flow occurs in the accelerator configuration.

In the neighborhood of the line u = u, the flow occurs in the gen-
Y2 = Y2 ¥ > 0 for the type of MHD channel under consideration when
a > 0, and so the singular points may be either foci or nodes.

When A = 0.1, the line u = u; is composed of foci for x and u
belonging to region (8.1); when A = 1 the singular points are foci
for 0 ='x < 0.44, and for 0.44 =x = 1 the singular points are nodes.
For A = 10 the singular line u = uy consists of nodes.

Thus in an accelerator corresponding to the example under con-
sideration there exist flow patterns investigated in paragraph 2 of the
second case, and in a generator —flow patterns investigated in para-
graph 2 in the first and third cases. We shall trace the integral curve
with initial data M, = 1, ugq= 0.5 and follow its change of character
with increase of the parameter A. For x = 1 the condition Mp = 1, pp =
= Do, 5 fulfilled.

Figure 9 gives the variation of the Mach number M along the chan-
nel for various A, For A = 0.1 the flow in the channel is entirely
supersenic; for 0.1 < A = 0.55 the transition from supersonic to sub-
sonic flow occurs in a shock wave, since the integral curve approached
a focus type singularity; for A = 0.55 the supersonic flow passes con-
tinuously to subsonic flow at a node type singularity.

We note in conclusion that the above investigation
may be transferred to the more general case of flow
with friction and heat exchange, if the corresponding
coefficients are known functions of the flow param-~

eters, the longitudinal coordinate, etc.
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